ChEMBL funding 2014-2019.


We have recently heard that our funding application for continuation of the ChEMBL database has been successful, and going forward the resource will be funded by The Wellcome Trust and core-funding from EMBL. Below is the text from the lay description of the application. First though, we must thank you, ChEMBL users, for your support and feedback to all that we do. There is a lot of exciting future data and technology to come, and we'll post more details about what we plan to do in future blog posts. As always, we are always happy to receive visitors for tea and cake!

Drug Discovery is costly, slow and complex, and despite much fundamental scientific progress, the translation of this into new safer medicines has been slower than anticipated. One of the key steps in drug discovery is the identification of specific drug-like bioactive compounds that modulate a gene believed to be causal in the treatment of a disease. Most new drugs are themselves chemically similar to old drugs, but target new proteins, or with improved properties and distribution within the body. Understanding the activity of previous drug-like compounds is therefore key to the discovery of new drugs. However, much of the data in drug discovery is locked away in patents, publications and within companies. Our work, the ChEMBL database, builds a large database of relationships between drugs, other bioactive compounds, genes and biological function to provide a unique resource linking Genomics, Biology and Chemistry. The data we provide is all completely Open and has become an important source of data for academic, rare and neglected disease, small companies and large Pharma therapeutic discovery.

In this current application we will develop:

1) Greater coverage of bioactivity space - to deepen and formalise the data contained in ChEMBL via further curation.
2) Enhanced indexing with ontologies - to provide more structured data and ease integration with other resources.
3) Patent coverage - extend chemical-structure/target data to include the patent literature.
4) Address variation data – to include annotation of resistance and natural population variation data.
5) Technology enhancements - including RDF forms of ChEMBL and development of an API to ease data entry and curation tasks.
6) Expanded user community of ChEMBL - develop interfaces with new beneficiaries in clinical and biotechnology communities.